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ABSTRACT

An investlgation was conducted to determine in sltu the effects of ultraviolet

radiation and solar wind protons on materials considered for use on the 1973 Venus-

Mercury flyby vehicle. The experimental program involved more than 2400 hours

of continuous radiation-facility testing, preceded, interrupted, and followed by

in situ thermophysical property measurementson transmissive solar cell filters,

opaque solar cell-filter stacks, adhesives, 7940 fused silica, and Kapton film. Sun

rate, solar wind rate, and sample temperature were all increased witfl time during

the 2400 hours, providing an accurate simulation ofradlation conditions along the

planned flyby trajectory. Final exposure levels of 12, 000 ESH and 1016 protons/cm 2 I_

were reached. Solar absorptance increased and solar transmittance decreased in most

solar cell filters. The solar absorptance of solar cell-filter stacks also increased.

Changes measured in solar cell filters were generally less than changes measured on

solar cell-filter stacks. Both ultravlolet and proton exposure reduced the effective-

nessof the ultraviolet rejection coatings in the solar cell filters. In some materlal.%

slmultaneous exposure to protons and ultravlolet radiation yielded synergistic damage

greater than the sum of proton degradatlon and ultravloiet degradatlon in separate

samples. Thermal damage in unbonded Kapton film was catastrophically large.
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INTRODUCTION [_.

A flyby of the planets Venus and Mercury cL,_, _ ._he1973-1974 time period

is planned as part of the National Aeronautics anrJ S_',.¢eAdministration's continuing

unmanned planetary exploratlo,_ program. SuccessfuJ completion of a space flight

to within 0.4 astronomical unit (the approximate radius of Mercury's orbil about

the sun) raises new requirements for temperature control of the flyby vehicle• At j

0.4 AU the solar intensity is some six tlrn_ that at Earth (1 AU). Temperature

control of a flyby vehicle's solar array is particularly critical, for whereas the more

.N intense solar radiation closer to the sun can provide increased conversion energy for

electrical power generation, definite temperature control is required to limit any

drop in conversion efficiency and, indeed, to forestall system failure from the high

temperatures anticipated. Such solar array materials as state-of-the-art solders used

heretofore would be expected to melt, raising the likelihood o,c loss of electrical

continuity while the flight is in progress. :

_ Typical temperature regimes expected during a Venus-Mercury flyby have

_ been discussed elsewhere (ReFerence '1is an example) and several feasible methods ,

, of reducing temperature extremes have been proposed. Variable-geometry solar

_ panels have been designed, for example, so that their effective proje=ted area

ex_,,_sedto the sun can be reduced at will as solar intensity rises. Various ratios of

active cell areas to inactive reflector areas on a solar panel have been studied with

the idea of rejecting as much incident solar energy as possible with a "mirror mosaic".

i Another solar panel design concept for spacecraft bound in. Jrd toward the sun

involves bansmittlng only certain wavelengths of the sun's energy to solar cells

" wavelengths the cells can utilize mostefficiently for con/ersion to electrical power

_ _ and rejection (reflection) of as much as possibleof the untransmltted energy. _ ilL

In any investigation of such spectrally selective "bandpass" filters for solar cells, -
• /

• _ an emphasis is placed on trading off filter thermophysical properties (such c_ 'olar !_

., absorptance, solar transmittance, and thermal emittance) for energy conversion :

:_ pr®erties, State-of-the-art solar cells (such as 18-mil-thick n/p 2 ohrn-cm cells

used in recent NASA space flights) accomplish energy conversionwith light,between

J
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O.4 and 1.2 micron wavelength, and utilize 0.6 to 1.0 micron wavelength radiation

mootef,'iclently. Therefore, on the missionswhere incident radiation is abundant,

the obiective in employing bandpassfilters is to transmit and allow a solar cell to

utilize photonene.rgywithin the wavelength region stated above, while simultaneously

reflecting unwanted radiation outside that wavelength region. This calls far filter

design of infrared rejection capability aswell as ultraviolet reiectlon.

Rejection of ultraviolet radiation has becomea standard feature for solar

cell filters, since ultraviolet radiation often is a cause of component d gradation

in space. Ultraviolet rejection is normally accomplished by an appropriate coating

on a sular cell "cover glass". The glass(or quartz) stopsdamaging low energy i

space particulate radiation while transmitting radiation useful for energy conversion; _:

the cover glass also provides a substrate for a first surface antl-reflection coating to

maximize such useful radiation. Previous surveysand experiments (such as References

2 and 3) have uncovered degradation in both coatlngs and substrates. The entire !

spectrumof radiation effects mustthus be examined: surface effects in the first and

secondsurface coatings; bulk effects in the sub_trateand bonding agent between

f_lter and cell. This program has spanned a broad investigation to increase under-

standing of anticipat ed effects during the upcoming Venus-Mercury mission. -t

Radiation sourcesof concern included solar ultraviolet radiation and solar wind

'- proeor_. Solar wind protonshave an exceedingly short range in mostmaterials, so ._

that their displacement and ionization damage is anticipated only in first surface t _

coatings, or in the first thousand or so ,_ngstromsof an uncoated substrate or other
.-

material. Outside the scope of the programwere alpha particles, "heavy" ions

from the sun, neutrallzlng "thermal" electrons in the solar wind, and high energy .

solar and a galactic cosmicray particles. It is widely felt that this listing of

included and excluded interplane_ry radiation sources is roughly in the order ofi

decreasing importance, taking into account relative abundances, damage mechan-

isms, and relati,,e effectiveness for damage.

Thermophysicolproperties investigated within the scopeof this programhave

included spectral and total absorpffon, trammission, and reflection properties of

2

i
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several candidate spacacraft materials including solar cell filters (dlscus3edin detail

hereinafter), and, of course, the effects of solar proton and ultraviolet radiation on

these properties. Beyondthe scopeof the program and left to be determined in the

future are the effects of solar ultraviolet and particle radiation on the thermal

emlttance of spacecraft materials and components.

3
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EXPERIMENTAL PROGRAM

An experimental program to investigate the effects of space radiation on

components and materlals aboard the 1973 Venus-Mercury spacecraft was inltlated

at the Jet Propulsion Laboratory (JPL) in 1969. This document constitutes the final

report to JPL of work done wlthln that program framework at the Boeln3 Radiatlon

Effects Laboratory (BREL)during 1970. The Boeing Company was asked to do

experimental work including a 2400-hour simulation of the Venus-Mercury mlssion.

This interplanetary flight calls for a transit of a space vehicle to the neighborhood

of Venus over a real-time period of approximately 2900 hours. Gravltational

attraction during the Venus flyby will alter the spacecraft trajectory so that Mercury

is approached some 1400 hours later. The mission concludes wlth a past-Mercury-

encounter phase on the order of 500 hours long.

The 2400-hour experimental investigation constitutes a minimal test ac-

celeration factor of 2 over the real-time misslon. Figure 1 shows the basic test

.;xposure plan insofar as simulated ultravlolet radiation and solar wind intensity are

concerned. A five-fold increase from 2 to 10 sunsand solar wind intensities

(relative to Earth orbit at 1 AU) assumesMercury encounter at aphelion (0.43 AU).

Ace Jrare simulation of temperature excursionsexpected in vor;ous materials

tested was also included in the experimental plan. The importance of providing for
''. -+

• this is discussed later in this document. Figure 2 representsthe temperature of test

. sample substratesas a function of time (test hours) during the simulated mission.

The predicted temperature profile with time, as calculated assuming_:ertain

¢.bsorptionand emissionproperties of solar panel components, without radiation

. degradation being considered, is compared in Figure 2 with the actual temperature

"schedule" employed during the 2400-hour radiation exposure test..!

• 4

'_' Test Materials i

Emphasisduring this experimental programhas been placed on 3 "bandpass"

solar cell filters that are cond!dates for the 1973 Venus-Mercury space flight.

Thesefilters have been evaluated aione and in combination with n/p 2 ohm-cm cells.

4
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Other materials investigated include uncoated 20-mll Corning 7940 fused silica

substrates employed for the f_lter coatings, adheslves between 7940 quartz and

aluminum reflectors, and Kapton polylmicle film being evaluated for possible useas

a thermal shield over much of the Venus-Mercury spacecraft. All these types of

materlals are listed in Table 1.

Table 1 also delineates the type of exposure (ultravlolet-only, proton-only,

or simultaneous proton/ultraviolet radlatlon exposure) recelv_.d by each sample

coded with a JPL-assigned number. The table identifies the numbersassigned to

_ samplesevaluated during the 2400-hour exposure, and during a preliminary 500-Z.

. hour exposurediscussedlater under "Temperature Effects. " Sample sizes of 2 cm

by 2 cm (the size chosen for space flight use), in combination with the total

number of samplesand material types to be exposed, placed a severe constraint on

available beam size. Programschedule did not provide for development of tech-

nlcal ways to alleviate this constraint (such as multiple runs, beam expansion, or _

defocusing beyond that already available), but reduction of filters in the 2400-

hour test to a 1 cm by 1 cm size dld provide some relief as to total samplearray

_ size.

_: Signifloant pre-irradiation sample-to-sample differences were noted,,_

_ especially in the infrared-wavelength-region reflectance characteristics of several

i of materials. The silicone adhesives investigated exhlbffed appreciable
types

sample-to-sample variations "n infrared absorption bands centered at 1.7 and 2. ?

microns. Likewise, cell/filter combinations as received had different pre-

irradiation reflectance values at wavelergths Ivnger than about one micron. Smaller

reflectance value variatiom were measuredat shorter wavelengths (visible and

ultraviolet regions) in the various cells, filters, and adhesivestested. These

measuredsample-to-sample _iffere_,ces are shown in spectral plots included later in

the "Experimental Results'.'section.

, I
7
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Table 1. Solar Panel ar.d Other Materials Investigated and Type
and Amount of Radiation Exposure Received.

Sample Number and Exposure Received

Type of Test Sample 2400 hr Test 500-hr Test
UV p+ UV/p+ UV p+ UV/p+

Blue filter on 2 _-cm cell 2074 2092 2083 2035 2047 2041

Modified 4026 filter on cell 2075 2093 2084 2036 2048 2042

Blue-Red filter on cell 2076 2094 2085 2040 2052 2046

Blue filter alone 2077 2095 2086 2038 2050 2044

Modified 4026 filter alone 2078 2096 2087 2039 2051 2045

Blue-Red filter alone 2079 2097 2088 -- --

Clear glass (7940 fused silica) 2080 2098 2089 w --

CIear g lass/RTV-602 2081 2099 2090 _ _

adheslve/pol ishedaluminum

Clear g lass/XR6-3489 2082 2100 2091 m _
adheslve/pol ished aluminum

Blue-Red filter/adhesive/ _ m -- 2037 2_9 204J
pollshed aluminum substrate

3-m;I Kapton polyimide film m one one w .=- m
_mplo _n_?lo t

Initial transmissionproperties were fourd to exhibit lessvariation from sample

to sample, with the exception of the type 4026 bandpassfilter, in which cuton and

cutoff wavelengths changed slightly (up to 10 mla)from sample to sample. This

caused only slight variances in measuredthermophysical properties (solar-weighted

values), but created significant yet solvable problerm in computer-processingof

separate spectral reflectance and spectral trammittance data to determine spectra_

absorptanceproperties of the 4026 filter (see Data Acquisition and Processing

section below).

8
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Table 2 and Figure 3 give addltlonal details about characteristics of the

filter samples investigated during thls program. Table 2 lists reflection and trans-

mission characterlstlcs for the 3 filters (blue, blue-red, and 4026) that were

evaluated both alone and in stack combinations wlth solar cells. Included are

cuton and cutoff wavelengths of each filter alone, and an indlcatlon of the spectral

selectiveness achieved by the multilayer interference designs. Figure 3 shows

"exploded" vlews of each of the 3 filters tested in two configurations m alone

' (both reflectance and transmittance properties measured)and cemented to cells

(reflectal.ce/absorptance properties determined). A corr_arison of filter-only and
-

filter/c:ell reflectance curves in Appendix A showsthat certain wavelength shifts

occur a:; a result of cementing filters to solar cells. Two of the largest shifts are

(a) the "red peak" in blue-red filters, which is shifted approximately 20 milli-

microns toward longer wavelengths, and (b) the 4026 filter cuton wavelength near

• 0.6 micron, which shiftsapproximately 10 millimlcrons toward longer wavelengths.

_ ExposureApparatus

_ Furt'her development of the existing and proven Boeing combined radiation {

,_ effects test chamber (CRETC) has taken place in support of this solar cell/filter
._" effects pro_llam. The principal capability expansion has been the installation of

_:. an in sltu transmissionmeasurementsystem, together with an optical adjustment

i_I mechanismmaking possible the measurementof various sample sizes in both

:_ reflectance and transmittance modes.
"_..

Principal features of the CRETC facility have been described in earlierreports (References4-6) for similar radiation effects investigations. Description of

i_ those portions of the facility applicable to this program is repeated here. Figure 4

_:_ is an overall view of the CRETCand its associated low energy particle accelerator
"t_,,

;_' (LEPA). The LEPA is capable of delivering positive ionsextracted from its RF-

t
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Table 2. Spectral TransmissionCharacteristics of Three Solar
Cell Filters Investigated

2a. Blue Filter Characteristics:

1. Antlreflectlon coating. To produce reflection of lessthan 2 ?o
in the region 600 to 800 millimicrons.

2. Cuton. 410 mHat 50?0 transmission:k 15 mtJ.

3. Ultraviolet rejection. Lessthan 17_.

4. Transmissioncharacteristics. The mlni..lum transmittance measuredat
normal incidence in air is as follows:

500 mlJto 600 mlJ- 85
600 mlJto 1100 mp - 90
600 mlJto 800 mlJ - Not lessthan 94?. averag_e
450 mlJto 1100 mlJ- Not lessthan 94_average

2b. 4026 (Modified design) Filter Characteristics:

1. Antlreflectlon coating - None

2. Cuton. 650 mlsat 50 _Ltransmlsslon :k 20 mls.

3. Ultraviolet reiection. Lessthan 1 _.

4. Cutoff. 1000 mlJat 50 Ztransmlsslon+ 40 mH.

5. Transmissioncharacteristics. The minimum transmittance measuredat
normal incidence in air is as follows:

700 mlJto 950 ml_ - Not lessthan 75 _[ average.

6. Infrared cuton. 1900 mp at 50Z transmission+ 40 mp.

7. Infrared rejection. 1050 mHto 1800 mH - Not less than 95Z average, r

2c. Blue-Red Filter Characteristics:

1. Antireflectlon coating. To produce reflection of less than 2 _ in the
region 600 to 800 mlJJlmicrons.

2. Cuton. 400 mp at 50Z transmission:1:15 mp.

3. Ultraviolet rejection. Lessthan lZ .

, 4. Cutoff. 1130 mpat 50X transmission 4-40 rap.

5. Transmissioncharacteristics. The minimumtrammittance measuredat
normal incidence in air is as follows:

600 mp - 800 mp - Not lessthan 92Z average

6. Infrared rejection. 1165 mp to 1450 mp - Not less than 95Z .
|1

10
II

i

1971010927-020



BLUEFILTER
Filter alone F;lter on solar cell .

UV Rejection _I ",,
Coating on : _I ••

UV & _ 2nd Surface I Ii

Beams_ : T
!i

Anti-reflectlon RTV-602 J' ",,
Coating on Adhesive Between ' • J
Front Surface 20-mil Quartz Filter and Cell "

Sul_trate

4026 FILTER

Multilayer i_
Dielectric _,UV & p+ Coating -_

Beams

No _ , -.iAriel-reflection RTV-602 ' . ;

Coating Adhesive Between • ,,,, i

20-rail Quartz Filter and Cell
'Substrate

BLUE-REDFILTER _ t

UV Rejection & i _ ,

IR Rejection I I _.
UV & p+ _ Coatings • ' _ -"

__
Beoml • I

I i

Anti-reflectlo RTV-602 ,Coating _ Aclhml_ Between .
20-rail Quartz Filth- and Cell
Sul_ltrclte

Figure 3. Exploded View of Three Filten Investigated and the Two Configurations Tested
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excited plasma to the CRETC, with particle energles selectable wffhln the range

O. 5 to 100 keV (kilo electron volts). For this program, 3-keV protons were extracted

from the LEPA source and separated from other hydrogen specles by a bending and

mass-analyzing magnet between the LEPA and CRETC. The proton beam, wffh

further defocusing inside the CRETC, was delivered on the sample plane at antici-

pated solar wind rates (108 - 109 protons/cm2-second).

Figure 5 is a view of the opposite end of the CRETC facility. With the

chamber door open, sample positions and interior equipment are apparent. The

sample and dosimetry arrays are positioned in Figure 5 so that, were the chamber
%

door closed, the sample holder would be adjacent to the integrating sphere, and

the particle doslmetry tabs would be in the exposure position. More precisely, the

lower group of doslmetry tabs seenwithin a dashedrectangle at the extreme left

of Figure 5 would be adjacent to the rectangular proton channel and UV baffle.

12
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_ _L_°S --Z. ,_,_,:_a_._,,._.........._ ......,,,..........._..._...

Figure 5, CRETCUltraviolet Sources, IntegraH_ Sphere, Sample Holder,
and Other Interior Equipment I['

This baffle is positioned so that none of the lamp radiation (whether ultraviolet or

longer wavelengths) can directly reach sample positions inside this rectangularly

shaped a_ea. The charged particle beam (protons in this program), however, is on

a line of sight from the LEPA beam port through the defocusing Einzel lens to

sampies placed within tke rectangular area. Thus, samples placed there are de-

noted the "proton only" array, but it should be kept in mind that energy from the

ultraviolet source lamp(s) is scattered and reflected throughout the chamber, and

a small amount ":.anenter the proton channel. The intensity involved is a minute

fraction of one sun, and due to the poor re,:lectance of stainless steel in the ultra-

violet, the wavelengths involved are almost entirely in the visible and near-

infrared wavelength regions.

Samplesplaced justebov : the proton ch'_nnel, anywhere throughout an area

the size and shape of the proton channel cross-section, receive both proton exposure " :

and ultraviolet radiation exposure. On the dosimetry tab array at the left of Figure

5, this proton plus UV region extends above th_ dashed-line rectangle to the single

dashedline which is near the uppermostproton tab. Thus, the entire array of some

two dozen dosimetry tabs servesto map the uni%rmity of the proton beam at any

given time. Absolute proton intensity is mer-ured with a Faraday cup behind an

13

1971010927-023



it-

aperture in the center of the dosimetry tab array. The uniformity and ab-olute

measurementsare correlated when the entire sample holder and dosimetry arm is

:noved, which rotates the tab just above or just below the aperture into the space

usually occupied by the aperture. For the relatively large arrays of samples ex-

posed to protons (and protons plus ultraviolet radiation) during this program, spatial
m

uniformity has been rr_intained within plus or minus 20 percent. The LEPA has a

deliverable proton flux range much in excess of the 2-solar wind to 1g-solar wind

variation with time called for in Figure 1, so that appropriate selection of LEPA

controls provlde5 the various proton inte:_ities indicated.

The ultraviolet radiation for the simulated Venus-Mercury mission exposure

is emitted by arc discharges in eithe.r or both of two long-arc xenon lamp sources

seen at the right in Figure 5. Selection of one lamp or both, coupled with the

large wattage range over which each lamp maintains its arc discharge, has pro-

vided a sun rate selection range large enough to encompass the 2-sun to 10-sun

variation with time called for in Figure 1. Sun rates have been determined from

radlome;er output levels taken wlth and without a UV-absorblng filter over the

radiometer detector. Uniformity of ultraviolet radiation intensity over the sample

array is determined by "mapping" with the radiometer held in a precision jig. For

the relatively large arrays of samplesexposed to ultraviolet radiation during this

+: program, spatial uniformity has bi_en maintained within plus or minus 10 percent.

r
The temperature control systemusedduring this program is diagrammed in

Figure 6. The systemwas used in a modewherein incoming nitrogen gas was always

heated or usedat its ambient temperature. ThUsresulted in the temperature range

+10°C to +140°C previously depicted in Figure 2. (A different configuration would

be used to cool gas or even supply liquid nitrogen to simulate conditions during

space fllghr to the outer planets. ) During much of the testing period the controlled

temperature was virtually without fluctuation, and within one degree Celsius of the

desired value. On occasion, such as during UV lamp wattage changesor at times

of changing temperature "set point", excursionsup to _5°C occurred while the

proportional controller adjusted to the new value. The sample holder in the CRETC

constitutes a relatively la:ge thermal mass. Consequently temperature changes

14 6
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Figure 6. CIETC Se_pie Subltrate Temperature Control System
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m
occur at relatively low rates. (An addltional example is that approximately one

hour is needed to elevate sample holder and samples from room temperature to

+140°C. ) In evaluating results of the 2400-hour and preliminary 500-hour exposure

tests, it should be remembered that, including measurement periods, samples were

"at temperature" somewhat longer than the indicated hour periods. For the 2400-

hour test, the time was approxlmately 2600 hours, spread fairly evenly over the

test period and concentrated during measurement periods. Durlng the preliminary

500-hour test eauipment problems were encountered and consequently the samples

were at +140°C for a total time of approximately 900 hours, including measurement

perlods.
m

Vacuum I_vels of 1 x 10-7 torr and better were achieved during exposure

perlods, using combinations of ion, cryogenic, and turbomolecular pumping. During

times of sample measurement, vacuum levels of 3 x 10-8 torr were typically reached.

Sample Measurement Apparatus

ApparahJs usedto evaluate in sltu spectral reflectance, transmittance, and

absorptance properties of solar cell filters, adheslves, and Kapton film during this

program is shown in Figure 7. The equipment external to the CRETC vacuum chamber

includes a double-beam, ratio-recording far UV spectrophotometer, a data encoder

and readout system, and a card punch. Th;s sample measurementsystemenables

spectral data to be recorded _n the normal way as raw data on spectrophotometer t

charts, and simultaneously te be punchedon cardsfor subsequentcomputer

processing.

The in sltu portion of the measurementsystemcan be described in the fol- i

lowing way. An integrating sphere reflectometer ;, situated i,, vacuo such that a t

translational movement of the sphere(Figure 5)_ coupled with a rotational movement

of the sample holder on its "arm" (Figures 5 and 8) will bring any desired sample

into position for measurementat the sphere'ssample port. In Figure 8b the sample

and dosimetry arraysare rotationally in transff from measurementand exposure

positions(respectively) to their exposure and measurementpositions(respectively).

The ]mera angle in Figure 81)exposes to view the fixed Faraday cup described

16 •
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: Figure 7. Reflectance Measurement and Data Collection Systems

'i earlier, and the in situ sample transmission measurement source. Filter samples are

_.. mounted at o common radial distance from the sample arm pivot point, so that with
:d°

_ one translational setting of the integrating sphereport, all filters can be measured

_! by bringing each in turn in front of the sphere sample port with a rotational move-

_ ment of the sample arm. The larger solar cell samplesand adhesive samplesare

•: similarly mounted along common radii, mostclearly shown in Figure 8c. Figure 8c

7 also shows the groeplng of samples into horizontal rows for proton-only exposure,

ultravlolet-only exposure, and simultaneous proton/ultraviolet exposure.

; '
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Figure Y represents a top-vlew, line diagram of the in situ sample measure-

ment system. The double-beam configuration for reflectance measurementshas

been proven on numerc,us programs over the past 4 years. It provides reflectance

dGta with high precision and repeatability (:k1/2 percent or better) which is only

possible by using a double-beam-type reference. The refe.'ence is the magnesium

oxide/Z-93 coating on the integrating sphere wall. In maklng a measurement, a

reference curve is produced by (1) plvoting the sample beam minor aw_y from the

sc_rr.pleport (using a solenoid in vacuo) _o that the sample beam also strikes the

MgO wall (dashed line inside the integrating sphere in Figure 9a), and (2) scaling

the chart to the proper value with the spectrophotometer 100 percent potentiometer.

" Then sample reflectance is n_easuredby returning the sample beam to the sample

port. Being a contlnuous-scan instrument, the Beckr,_anDK-2A spectrophotometer

includes (when operating double-beam) an internal programtoadjust slit width

as s_urce energy and detector sensitivity change with wavelength. : '

Becauseof limited time during this program: addition of transmission

measurementcapability to the CRETC facility hasbeen sestricted to an interim

configuration utilizing a lamp source in vacuo, optically coupled to the sample

beam path discussedabove, and terminating with the appropriate detectors mounted

_ beyond the monochromator (Figure 9b). Thus, for determining transmissionproper-

_ ties during this program, slngle-beam directional measurementshave been made, the

_ sample beam passing through the integrating sphere, but not imp_nglng on its walls./

In the slngle-beam (energy) mode, the DK-2A provides for manual selection of slit _"

_" width, sourc_ energy, and detector/amplifier gain. Then pen responsebetween

: zero and 100 percent is a function of all these three parameters times percent

Y transmittance, Normalization to display percent transmittance alone simply requires

iI a different form of reference curve than the one generated for reflectance measure-
ments. This is done with a reference port adjacent to (i. e., in the samerow as)

"_' the filter samples (o total of 13 ports in Figure 8c). The optical equivalence of the_'

'; 13 ports was determined before mounting samples; among all 13 ports there is less

than one-tenth of one percent variation in effective transmittance. Thus only one

port not covered with a sample validly servesas a reference for all 12 filter samples°

19
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Precislcn or repeatability of measurement is another matter. As with all

single-beam measurement conflguratlons, the passageof time between _¢terence

curve scan and sample curve scan, whether seconds or mlnutes, can and does

introduce subtle percent variations in displayed transmittance percentages due to

source strength changes and other varlables along the optical/electronlc train.

Spectral varlations of 2 percent are wlthin experimental error.

•" At the beginning of the program there were two concerns about directional

transmittance measurements;K.ese were quickly resolved. One involves the fact

ihat the transmission measurementsource (in sltu tungsten-lodlne lamp) is mounted

"behind" the filters, opposite the side on which protons and ultraviolet radiation

are incident. Separate bench measurementsusing a Beckman DK-2A and Gier-

Dunkle integrating sphere yield identical hemispherical transmittance curves, no

matter which slde of a filter sar"ple faces the measurementsource. These same

transmittance curves also resolve the second concern, whether directional and

hemispherical transmittance measurementsare equivalent. The blue and blue-red

filter designs result in virtually no scattering, and further examination after irradia-

tion reveals no inducement of scattering or diffuse appearances; transmission remains

' directional. The many dielectric layers of the 4026 filter design offer increased

posslbilities for scattering and inducement of diffuse qualities during irradiation, yet

examination of the 4026 filters after testing likewise shows no changes. Cuton/ t

cutoff wavelengths do shift somewhat as an unirradiated 4026 filter is viewed from

different angles (both by eye and by turning a sample with respect to its measur_

ment beam). The 20-degree angle already in use for reflectance measurementshas

_: also been used for transmittance measurementsduring this program. In summary, it
#,

is felt that if any directional effects or differences exist in any filter types investi-

,_ gated, they are acceptably small.

21
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Data Acquisition and Processing

The experimental appcratus necessary to align and measureboth opaque and

non-opaque samples has been described and discussed above. This section discusses

the measurement and data processing procedures used during this program.

Reflectance measurementshave been made on each sample, whether opaque

(cell/filter stacks, adheslve/quartz, Kapton film) or non-opaque _filters and un-

coated quartz), with hlgl" resolution of spectral data in mind. A separate Beckman

chart and set of punched ca_s is made for each of three wavelength regions n

0.28 to 0. 36, 0. 36 to 0.71, and 0. 71 to 2.5 microns -- at scan speedssufficiently

slow to resolve all important spectral structure. Sample curves thus made are

divided, wavelength by wavelength, by the values on reference curves (discussed

in the previous section) so that the normalized result is invariant to the DK-2A 100

percent potentlometer setting. At the beginning of the program, a comparison of

these normalized CRETC reflectance curves was made with comparable reflectance

curves (of the sametypes of samples) generated using a bench DK-2A and sample-

at-the-center integrating sphere. The latter integrating sphere is more widely

regarded as approximating absolute reflectance more accurately, if imperfections

'_ in spherewall uniformity and dlffusivity are ignored. A spectrally dependent

function expressingdecimally the ratio of curves obtained with the two sphere t

configurations was thus determined, and incorporated into the existing data

processingprogram. This program, working with reflectance data on all samples,

has been used to compute solar reflectance of each sample and solar absorptanceof

• opaque samples, and to control spectral plotting of processeddata. Thermophysical

property values ubtained during this program cppear to be in very good agreement

with values obtained elsewhere previously, and have updated some earlier data.

During the courseof the program this data processing program hasalso been

modified and extended to treat sample transmittance data. The slngle-beam,

22
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contlnuous-scan transmlttance measurementprocedure, includlng as it does the

manual selectlon of galn, slit width, and wavelength scan speed, requires further

breakdown of spectral regions scanned at a time. Seven regions -- two in the

ultraviolet, three in the vlslble, and two in the infrared -- have been employed,

with wavelength scannlng at reduced speedsfor greater accuracy. Division of

sample scan values by reference scan values, wavelength by waw.0ength, directly

yields absolute spectral transmittance. Minor problems arise when manual slit

settings different from automatic silt program settingsare used(the former for trans-

mittance measurements, the latter for reflectance measurements), especially on

filters with steep spectral dependences. The 4026 filter in this program is probably

a "worst case"• A curve made with relatively wide monochromatorslit settings has

lessspectral resolution and steepnessthan a curve made with relatively narrow slits.

A displayed reflectance plot is not identically like an inverted transmittance plot.

I unlessadditional data treatment is undertaken to compensate for the silt width
differences just mentioned. This is, in short, the procedure that has been established

during the courseof this program: by reiterative trials to delermine spectral equiva-

lence factors to compensate for different color bandpassesin separate reflectance

I: and transmittance measurements. This is especially necessaryin order to add

computer-processedreflectance values and cornputer-processedtransmlttance values "

' _, of filter samples, obtaining the spectral absorptance (and solar absorptance) from

unity minusthe computer-added sum of R and T.

" The majority of the remainder of this report consistsof formal reporting c,f I.

2ectral reflectance, transmittance, and absorptancedata obtained on eleven types

: of solar panel and other spacecraft materials and components. The mostsignificant
• _" II

_ resultsare summorlzed in the next section, "Experimental Results. Detailed

[:_ spectral plots are gathered in the appendices.I
1
t

• i
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EXPERIMENTAL RESULTS

As stated before, the principal experimental effort dur!ng this program has

been conducting a 2400-hour in situ simulation of the 1973 Venus-Mercury flyby

mission. Degradation of reflectance and transmittance properties due to radiation

exposure occurs in both transmitting and non-transmitting materials. Both protons

and ultraviolet radiation contribute to the measured degradation, with relative

contributions varying from material to material. There are synergistic effects von-

trlbuting to combined radiation damage greater than separate proton and UV damage

amounts in several materials, and less than additive degradation in others.

Solar Cell Filters

Results for the most widely used solar cell and filter combination (blue

filter) are summarized in Figure 10. The effect of ultraviolet radiation, and to a

lesser extent protons, is to reduce the effectiveness of the UV rejection filter

coat;ng, and to reduce the effective transmittance of the blue filter at wavelengths

. important for conversion by the solar cell into electrical energy. In the near

infrared wavelength region, init;al sample-to,ample differences before exposure

are as important a consideration as any changes induced by radiation exposure.
0

"r i , ' I0

i t I i _

-" I-_/t t I t _'

t

"_'_'_,. _® ,i ,..
i 1 1,,,

.2 ._ .6 .O t .0 t .2 t.q 1.6 t .O 2.0 2.2 2._1 2.6 2.8

Figure 10. In Situ Effecb of Pmtam a_l Ultmvlolet R_liotion on Blue Fill_r/2 d_m--cm Cell Stack
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Degrader|on of the UV rejection filter by slmultaneoL:_exposure to protons and ultra-

violet radiation is lessthan the sumof individual proton and ultraviolet damage

amounts. On the other hand, combined proton/UV damage at wavelengths betweer.

0. 4 and 1.0 microns is approximately additive. Complete spectral data including

mid-exposure results is g!:,_.n in Appendix A in Figures 24, 25, and 26.

Figure 10 indicates amountsby which protons, ultraviolet, and simultaneous

exposureto protonsand ultraviolet degrade solar cell properties as indicated by

spectral reflectance measurements. Measurementof the transmfft_nce of the blue

filter alone, before and after the 3 types of exposure, give results summarized in

Figure 11. It shouldbe noted from Figure 11 that lossin energy reaching the solar

cell from reduced transmittance occurs ever a narrowerwavelen_,tthregion (0._t to

0. 8.microns) than loss in energy due to increasedfilter surface reflectance (Figure

10, 0.4 to 1.0 microns). Data is displayed in Figure 11 and in later transmlttan¢,e

plots in this report, exactly as computer processed. Smoothing and other widely

practiced audlonvisual efforts have not been employed° Thu% as indi_:ated earlier,

_ small variations_ perhaps2 percent due to single-beam precision limits, may be

observed in these computer-plotted transmittance curves at onewavelength or

another. In Figure 1'1an example is at G.72 microns, w.r,ere transmittance changes

are indicated to be much smaller than at wavelengths slightly longer and shorter '

than 0. 72 microns. Such spectrally narrow variations shouldbe discounted in any

further analysis of transmittance data, since real transmittance changes are those n

that are apparent in this document's transmittance plots at rn_rethan one wavelength

poinr. Wavelength points that are connected by computer-controlled plotting occur

every 0. 02 micronsin the infrared, every 0. 005 microns "nthe visible, and every

• 0. 002 microns in the ultraviolet. 1
z

Complete spectral transmittance data for the blue filter, including mid-

exposureresults, is given in Figures30, 31, and 32 of Appendix A. _ r"
_4

Clgure 12 summarizesreflectance degradation measured in 4026 filters over

2 ohm-.cmsolar cells. The dielectric interference coatings on the 4026 fliter

broaden the UV rejection feature to reject wavelengths as long as appraxlrnorely

0. 6 micron before exposure. The relative ¢on_ibutions of ultrav;oiet radiation

*i
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Figure 11. Decrease in in Situ Spectral Trammittance of Blue Filter After 2400-Hour Exposure
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Figure 12. In Situ Effects of Protonsand Ultraviolet Radiation
_-/W;_ified 4026 Filter/2 ohm-cm Cell Stack

and protons, and the greater-than-additive combined proton/UV damage, are

_' evident at the shorter wavelengths in Figure 12. Cuton and cutoff wavelengths

i (0.6, 1. O, and 1.8 microns)shift toward shorter wavelength values during exposure, i

'"_ In Figure 12 this wavelength shift is labelled near 2.2 microns, where local re- (

flectance peaks shift noticeably toward shorter wavelenths. At 0. 9 and 0.8 microns _/

the tendency is for peak-and-valley structure to be attenuated along with the
i

wavelength shiftsduring exposure.

Complete spectral data for the 4026 filter/cell combination, _ncluding

._ mid-exposure results is contained in Appendix A as Figures 36, 37, and 38.

1 The third filter/cell combination _nvestlgated involves a blue-red
filter

over 2 ohm-ca solar cells. Refle¢;ance changes in this combination are summarized

in Figure 13. Besidesinitial sonple-to-sample variations in the infrared, the

principal result displayed i,'. figure 13 is that combined proton/UV clamc;geis less

than either proton d_mage or ultraviolet damage consideredalone. This is true

both for the UV rejection filter and at Ion_/er_.avelengths surroundir_ the red peak.
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Figure 13. In Situ Effectsof Protonsand Ultraviolet Radiation
_nB--l_ue-RedFilter/2 ohm-cm Cell Stack

Complete spectral data for the blue-red filter on 2 ohm-cm cells, including mid-

,:, exposure results, is shown in Figures 48, 49, and 50 of Appendix P. Spectral

transmittance curves of the blue-red filter alone show Ic_sesat wavelengths sur-

'. ": rounding the red peak. Complete spectral transmittance data includ?ng mid-

exposure results, is shown in Figures54, 55, and 56 of Appendix A.

Adhesivesand Quartz

.: : Included in this program was an evaluation of solar cell adhesives. Re-

.' flectonce changes in quartz/RTV-602/polished aluminum samplesare summarized

;: in Figure 14. The appreciable differences from sample ;o sample, evidently in

'_ thicknessof RTV-602 "cement" used to prepare each sample, as indicated by

" infrared absorptionproperties, shouldbe noted. The samplesexposed to ultraviolet

radiation for 2400 houPain accordance with Figure I degraded severely. After the

2400-hour test their visual appearance was a deep tan. Complete spectral results,

including mid-expmure data, are shown in Appendix A, Figures 60, 61, and 62.
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Figure 14. In Situ Effects of Protom and Ultraviolet Radiation
_n-_ear Glas (FusedSilica)/l_TV-602/Pollshed Aluminum

Similar pre-irradiation variations and pos_-irradiation reflectance changes :{

" are summarizedin Figure 15 for quartz/XR6-3489/polished aluminum samples. Cam- i

'_. plete spectral results, including mid-exposure data, are presented in Appendix A, i

t Figures 63, 64, and 65. BothXR6 and RTV adhesives exposedunder quartz (7940

fusedsilica) received muchhigher ultraviolet ESH exposure, of course, than would I

"_ have been the case for adhesives under quartz with a UV rejection coating. Some
_:

!: of the degradation is, in fact, in the "unscreened" quartz, as verified by trans-

" mittance lossesin uncoated quartz substratesexposed to protonsand ultraviolet

radiation, separately and simultanem,-'ly (Figure 16). Complete spectral results for

lquartz, including mld-exposure data, are presented in Figures66 through 74 in

Appendix A.
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Kapton Film

Kapton film was also evaluated during the 2400-hour test for application as

a "thermal shield" o_ the Venus-Mercury spacecraft. Preliminary design calls for

the film to stand off, away from the spacecraft; hence, there would be no conducted

heat to a substrateor spacecraft skin underneath (except along periodic support

mechanlsrm). To simulate this, Kapton sampJeswere mounted in the CRETCwithout

being bonded to their substrates;on two sides of the 2 cm by 2 cm samples, the

film was wrapped underneath the substrates. In the middle of a sample, the film

_ was separated from its substrate by at least several mils, and in places perhaps50

mils. The sample exposed to protonsar.d ultraviolet radiation simultaneously (up to

' 10 sunsby the end of the test) rose to an equilibrium temperature high enough to

- alter its chemical structure fundamentally, verified by a dark brown appearance

after the exposure and by a corresponding reflectance curve (Figure 17). The

sample exposed to protens alone remained relatively close to t,_,e_'emperature

profile shownin Figure 2.

0

•aftertrot _ "
t 2o

.. _"

Figure 17. _ Sit..___uEffects of Protom and Ultraviolet Radiation on Gold-Backed Kapton Film
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The amount of 3-keV proton damage indicated in Figure 17 is consistent

with results obtained with Kapton during an earlier program using 40-keV protons

(Reference 5). Complete spectral data, including mld-exposure results, are shown

in Figures 75 and 76 of Appendix A.
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ANALYSIS AND DISCUSSION

As indicated in the previous section, presentation of complete spectral

results, the highlights of which have been summarized in Figures 10 through 17, is

reserved for the Appendices to this report, due to the large numberof spectral plots.

Table 3 summarizes the combination of material type, thermophysical properties

derived, and kind of exposure that correspondsto each figure number to be found in

Appendix A, rhe location of complete spectral data plots from the 2400-hour test.

Thermol_ysical Properties

Thermophysical properties derived from computer-processedspectral data

are also gathered in Tables 4 and 5, for opaque and nan-opaque materials.

respectively. The equations dedning the thermophysical quantities uf interest are

jIs ('_)R()`)d_

Solar reflectance, Rs = J_s()') d

and

_" S • ,

" Solar transmittance, Ts = _ i
jls dX

) where I i),) is the solar irradiance as a function of wavelength _ and R().) and T(),)

_'_,, are sample reflectance and transmittance functions (respectively), generally varying

_ with ),. For transmissive(non-opaque) samples, solar absorptance is,by definition,

unity minus the sumof R and T, namely

a =I-(R+ _) "S s

. Of course, for opaque samplesthis reduces to

_ c=i. R .
S $

The integral _$ (_) d_ is an expression of the solar "constant". With cam-

puterized data processingavailable, it is appropriate to replace the other integral

evaluatiom with numerical suctions, so that

33
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Table 3. Figure Number in Appendix A for Each Material Investigated
in 2400-hour Test, Thermophysical Property Derived, and Type _.
of ExposureReceNed

Figure Number in Appendix A
Type of J.L

Solar Reflectance Solar Transmittance Solar AbsorptanceIMaterlal
u .

uv uv/p+ r,+ uv UV/p+ p+ uv uv/p+ p,

Blue filter on
• 2_ -cm cell ............ 24 25 26

Blue filter alone 27 28 29 30 31 32 33 34 35

4026 filter on cell ............ 36 37 38

4026 filter alone 39 40 41 42 43 44 45 46 47
I L

Blue-red filter
on 2_1-cmcell ............ 48 49 50

Blu=-red filter 51 52 53 54 55 56 57 58 59
alone

" Clear glass (quartzY
RTV-602 adhesive/ ............ 60 61 62

'_ polished aluminum
, .,, ,, .,,

-' gi (q )/_.,lear ass uartz t

XR6--3489 adhesive/ ............ 63 64 65
polished aluminum

m =,,,

7940 fused silica

(clear glass) 66 67 68 69 70 71 72 73 74
,. ,,,., • ..., m .,

Kapton film .............. 75 76
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Table 4. Solar Ablo_ptance of Opaque Samples Under Various ExposureConditions

Kind Sample Before After Exposurefor a Duration of
c,f Type and Exposure

Exposure Number 222hm 753 hrs 1573 hrs 2400 hrs
iii I II

Blue Filter 0.78 0.79 0.79 0.78 0.79

o on cell, 2083

_" 4026 Filter O.31 O. 34 O.36 O.41 O.44

•- on cell, 2084

,_ "_ Blue RedFilter 0.70 0.71 0.71 0.70 0.70
_" " on cell, 2085

"_ _ --_o Quartz/RTV/ 0.22 O. 26 O. 29 O.36 O.46

'i" _ E A lumlnum, 2090

f o _ Quartz/XR6/ O. 22 O. 26 O. 28 O.34 O.47"5
: ._ "2 Aluminum, 2091
._ i/) O

: Kapton Film. 0.35 0.37 0.40 0.67 0.78
. ,, , , _,,

; Blue Filter O.79 O. 79 O. 79 O.80 O.80 -

on cell, 2074

_ 4026 Filter 0.31 0.34 0.34 0.35 0.37
;- _ on cell, 2075 ,, __

o Blue RedFilter 0.70 0.70 0.70 0.70 0.70

,. on cell, 2076

I. _._._ Quartz/RTV/ 0.25 0".32 0.36 0.46 0.54 :

' 'i. x ...._ Alumlnum, 2081 _,
_! 5 Quartz/XR6/ OQ22 O. 27 O.28 O.33 O.48 _"t
_: A iumlnum,2082 i

(

Blue Filter 0.77 O.78 0.78 0.77 O.79 !
on cell, 2092 !

4026 Filter 0.30 O.32 0.32 0.32 O.34
on cell, 2093 i

BluePedrll ter O.7_ O.70 O.70 O.70 O.70

ql i

on cell, 2094

Quartz/RTV/ O.22 O. _ O.23 O.23 O.25

i Alumim_m,2099
Quartz/XR6 O.21 O. 23 O.23 O.24 O.26
Aluminum, 2100

i, ll

Kap._onFilm O.34 O.35 O.36 O.38 O.40L

5 iP
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Table 5. Solar Trammittance, Reflectance, and Absorptance Parameters of Four Filters

Under Various Exposure Conditiom

Kind Sample ,_
of T),Fe and _ Before After Exposurefor o Duration of

p Exposure 222 hrs 753 hrs 1573 hrs 2400 hrsExpceure Nul_er o
Ck.

ii

Blue % O,84 O. 84 O. 84 O.B_l O.82

E Filter, Rs 0.12 0.11 0.11 0.11 0.11
o 2086 as O.04 O. 05 O. 05 O.06 O.07

_- _ 4026 _r! O,29 O. 29 O.29 O.29 t,. 29*w

o _ Filter, R$ 0.67 O.&5 0.64 0.61 0.58
_ "_ 2087 _'_ 0.04 0.0_ -07 0.'0 O. _3

_. Blue/Red _r! O,71 O.70 L,.69 O.68 O_66
-. o Filter, Rs O. 23 O. 23 O.23 O.23 O. 23

o_ "_ 2088 as O.06 O. 07 O.08 O.09 O. 11

_5 Clear "rs O.92 .0.92 O. O.8991 O.88

"_ _a Glass Rs O. 06 O. 06 O.07 O.07 O.07
.. (Quartz), as O. 02 O. 02 O.02 O.04 O.05
u_ 2089

i ii I

Blue % O. 85 O..84 O.83 O.83 O.82
Filter, Rs 0.12 0.11 0.11 0.11 0.10

.
._ 2077 as O.03 O. 05 O.06 O.06 O.08
'9 4026 "rl O.29 O.30 O.30 O.30 O.30

Filter, Ri O.66 O. 65 O. 64 O.63 O.62 .,
2078 as O.05 O. 05 O.06 O.07 O.

Blue/Red Ts 0.'71 O.71 O.70 O.69 O.69

i Filter, Its O.2i' O.23 O. 23 O. 23' O.23

2079 as O.06 O.06 O.t)7 O.08 O.08

Clear "rs q. 92 O.92 Q.91 O.89 O.88
Glas_ R= O.07 O.07 O.07 O.07 O.07 .,
(Quartz), as O.01 O.01 O. 02 O.04 O.05 _,
208O

Blue % 0.84 0.85 L).85 0.84 0.83
Filter, Rs O. 12 O. 12 O. 11 O. I _. O.11
2095 c_ 0.04 0.03 0.04 0.05 0.06

4026 _rs O,29 O. 29 0, 29 O. 29 O.30

Filter, Rs O.67 O.66 O.65 O. 65 _, 64
2096 as 0.04 0.05 0.06 0.136 0.06

Blue/Red "rs 0.71 O,70 O.70 O. 70 O.70

i Filter, I_s 0.23 0.23 0.23 0._ 0.232097 as 0.06 0.07 0.07 0.07 0.0(7

.K Clear _rs O.92 O.92 O.92 O. 92 0. 91

Glass R! 0.06 Q.O_ O.Q7 C _7 0.07
(Quartz), ct O.OI O.O1 O.OI ¢1.OI O.02
209g
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c_mage to the reflect= _e p_er_ of Filters ._er _-el_ is _h, t_._ _+_._e _,

the reflectance c.f filt_rs alo_w. Modifie_) 40_ fil_ _s4.,e=_oldo_ ot 3_ m_ _,,_

example, disp!uyed in Appendix A in figures llst_ in To_,le 3, _s,_3_.,_'_,t_.__'_ge _

in-reflectance _lues and presented in Figure 18. _ olu_ o_ _R '_r_ _g_tt_e sh_'e _..

pre-;rmdiation reflectance at 360 mH is greater than r_ffecto,_e o_t_" __u_ ex_

posure times (horizontal axis). In agreement with the summaryplot _e_t_t_d _ ,

ear;;er (Figure 12), reflectance changesafter com%inedp_oto_c"_.!tmviolete_l_U_e
t

are greater than thoseafter ultmvlole_-only exp_ure and _e are greater th_,_

_" measuredmflectarme c:har_gm_.fter protor_-only exposure, But co_lderl_l e_ch

,'ype of exposureby itself, memumcldamage Is _earlyalways greater In the filter- i

over-_ell _ample than in the filter-only sample, In both types of san_les _om ere, i

presumably, contribut;om to sample roflo©tan_ from front and b_¢k lurf_ce_ of the

filter, and any absorption induced In bulk In th_ quart_ _ul_tmte can contrlbute,

but again, presumablyin both _an1_le_aus (filter ov_r cell, and flltor along),

[Results presented_r!ier for 7940 quo,_ do indicate Io_ of tmmmlnlon (Figure 16)

and increased al'.,._._._-"' -- _Figures72 through74 In Appendix A for 7940 fund slll©a

after e_pmuro)_ The only other phydcal differences betw_n fllter/¢el! samples

37
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and filter-only samples, of course, are the highly absorbing cell underneath and

the adhesive between filter and cell. Both adhesives evaluated do degrade heavily,

at least by "worst case", "accelerated" exposure with low-loss quartz instead of a

partially reflecting filter on top.

An analysis of the same kind uslig has values instead of /_R values would

show similar effects _ that as damage is greater in 4026 filter/cell combinations

than in 4026 filters alone; and that simultaneousproton/ultravlolet damage is

greater than ultraviolet or proton damage, and, in fact, even greater than their

sum.

Relative changes similar to these presented in Figure 18, but lesser in

extent, exist at wavelengths out to about 0. 6 micron o'- the 4026 filter. At longer

wavelengths, near 0.8 micronsand 1.2 microns, reflectance changesafter exposure

are measured, but are too small and inconsistent in 4026 filter samples to present

in this kind of plot.

Such is not the case with blue filter samples, though. At 580 mlJthe blue

filter, whether alone or bonded to a ceil, initially has a low reflectance that rises

with exposure. This is shownin Figure 19 for 6 blue filter samples, 3 over cells

and 3 alone. Bothprotonsand ultraviolet radiation are capable of reducing the

effectiveness of the antireflection coat|no on the front surface of the blue filter

_ {and blue-red filter). Absolute changes are smaller tflan in Figure 18 (note ex- _,

_- pcmdedscale on the vertical axis), but the data consistently shows that reflectance

_ changes (increases) in blue filters over cells are greater than reflectance increases

in blue filters alone.

In Figure 20 reflectance degradation at 360 mp is likewise more'extensive _

in blue filters over cells than in blue filters alone. In filters over cells, Figures 19

;! and 20 show combined proton-ultraviolet damage to be greater, generally, than

damage from ultraviolet radiation only., as anticipated. However, in samplesof i

tt.._ blue filter alone, both figures (19 and 20) indicate greater changes from
i

ultraviolet-only exposure than from simultaneous proton-ultraviolet expa6ure. This

is consistent with measuredhrammittance results for blue filters alone; Figure 1]

39 e
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i_.icci_es_c'l",Jii'F...v;oJeh-orlyexcx_sure°es.'i_si_"_re_f_rh_,nemeih_arwzeJ_ses ;"

the 51ue _lter H_c_e,oes ex.c_su_eto _r_ _._ ulh_violet ,x_di_tio_si_vIt_-_eeuslv.

A similar orx_lysisof dat_ sho_'_ lessc.c'r'sistentres_.,lrsForthe blue-tea Filter

thcnforeitherof theprecedinghve _It.-,,-_.At 580 _ (nearthere_pe_k_de_x:_.-

tiondue to ir.cre<_sedreflectonoeisgenerc:ilvmore extensi_ inblue-redFilters

over cells, than in blue_._d f.;!te_ -.c!_._'mLFig_:e 21_,. Consistent with Figure 13,

changesafter proton-ultraviolet exposure ore lessthan either ultraviolet or pr_,ton- _

induced changes by themselves. In Figure 22 for data at 360 ,,-_, filter-only damage

is sometimesheavier than, sometimes lessthan, damage in blue-red filters over cells,

depending on type of radiation exposureand length of exposure.

Temperature Effects

The importance of adequate and accurate temperature control of sampleshas

.' been show,i by this program to be of great sig,_iflcance. Mention hasalready been

made of the resultsobserved in Kapton film from the intentional lack of thermal ,

contact between samplesand substratesduring exposure(results summarized in .

Figure 17).
#

!. Beyond this "failure" of Kapton film are lesser, non-catastrophic effects i

_ measuredin other materials. The fact that filters having UV rejection coatings

continue to degrade throughoutexposure m whether early in the 2400-hour period

with the adjacent sarmle-holding block maintained at relatively low temperatures,

t or test at higher temperatures _ already
whether later in the 2400-hour has been

i discussed. On the other hand, those filters having infrared rejection or "stopband"
: coatings (blue-red and 4026_ sustain degradation to those coatings at low tempera-

tures and exposure values, but recover c_thigher exposure values when substrata

temperature rises sufficiently high. Examplesare found in Appendix A_ suchas

Figure 51 for the blue-red filter, Figure 49 for the blue-r,,d filter on o cell, a_

Figure 3_ for the 4026 filter bonded to a cell.

Prior to conducting the 2400-hour simulation of the e_tire Venuc-M4rcury

flyby mission, o 500-hour test was conducted simulating the constant-temperature,

1971010927-052
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Figure 21. Increase in Reflectan_ of Blue-Red Filter in Situ at 580 mH.

Figure 22. Degradation of UV Rejection in Blue-Red Filter at 360 mH
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constant-exposure-rate portion of the 2400-hour test (note Figures 1 and 2). Many

of the same materials were investigated in this preliminary test. Table 1 lists

definitlvely the samples exposed. Sample substrate temperature was maintained at

140°C throughout the exposure and measurement periods. Exposure levels at the

end o, 500 hours of 5 sun rate, 5 solar wind rate testing were 2500 equivalent sun

hours (ESH) of ultrc_vlolet radiation, and 2.2 x 1015 protons/cm 2 (3-keV). Thus

these maximum exposure values from the 500-hour test are some50 percent greater

in amount than exposure leveL_ on samples in the 24C0-hour test at measurement

point 3 (see Figures 1 and 2). Most samples in the 2400-hour test sustained appre-

; ciable degradation at measurement point 3 (753 hours, temperature still relatively

' low) and underwent substantia_addltional changes after measurementpoint 3, as

temperature and =xposure rates increased. In contrast, however, sample property

changes in the 500-hour test were in nearly all cases very small. Except for one

anomaly discussed later at the beginning of Appendix B, even the largest 500-hour

test changes wlth exposure were less _.an changes at 222 hours(measurement point

• 2) in the 2400-hour test. It appears, then, that high temperature radiation exposure

: alone is insufficient to simulate degradation anticipated in solar panel materials

_. during a Venus-Mercury-type flyby.

Table 6 lists the figure numbersin Appendix B that oresent spectral results

._ for the several materials investigated during Ihe 500-hour test. The small thermo-

4" physical property value charges derived from small spectral changes are gathered as t

Table 7 at the beginning of Appendix B.
,# Another effect related to sample temperature has been observed in modified

_ 4026 filters. Striations running nearly the length of th,_ filter, and shorter, localized ._
_,_ "gouge-like" defects develop in the dielectric coating layers of 4026 filters (whether

t alone or in cell stacks) asa result of the sample being elevated to temperaturm ap-

proximately +140°C. Thesedefects are observed whether or not radiation exposure

follows the temperature excursion. At tho beginning of this program, for instance,

sparesampleswere pumped down in the CRET_ vacuum chamber, and their tempera-

tures raised to +140°C by the method depicted in Figure 6 for the purposeof

checking out sample transmittance measurementprocedures. Sampleswere "at

43 w
t

1
I

i

1971010927-054



\

1

Table 6. Figure Number in Appendix B for Each Material Investigated
in 500-hour Test, Thermophyslcal Property Plotted, and Type
of Exposure Received

Figure Number in Appendix B

Type of
Reflectance Transmittance Absorptance

Meterlal

uv UV/p+ p+ uv UV/p+ p+ uv UV/p+ p+

Blue filter on
77 78 79 ...... 77 78 79

2 _-cm cell

Blue filter alone 80 81 82 83 84 85 86 87 88

4026 filter on cell 89 90 91 ...... 89 90 91

4026 filter alone 92 93 94 95 96 97 98 99 100

Blue-red filter on
101 102 103 ...... 101 102 103

2 D-cm cell

Blue-red filter/ 104 105 106 ...... 104 105 106
adhesive/aluminum

temperature" approximately 4 hours. When returned to room temperature and brought

back into air, both the short and long striation defects were apparent. They were

similarly evident, and on some samples were more abundant, after the longer 500-

hour and 2400-hour tests (which of course included radiation exposure). Figure 23 t

is an oblique view of JPL samples2075 and 2078 in air following exposure to ultra-

violet radiation during the 2400-hour test. The larger sample, a 4026 filter over a

2 x 2 cm cell, showsthe long strlatlons primarily, whereas in the 1 x 1 cm filter

(sample 2078) the shorter defects predominate. Tables 5 and 7 indicate that solar

transmittance (Ts} is unaf:ected by the inducement of these defects in 4026 filt,;rs.

Figure 23. Defects in Multilayer Dielectric Coating
of Modified 4026 Filter After 2400-Hour Test
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L.

CO NCLUS I0 NS

1. Adequate temperature simulation in combination with sin ultaneous

exposureto solar wind protons and ultraviolet radiation is the minimum necessaryto

allow an accurate prediction of effects of a Venus-Mercury flyby on solar panel and

other spacecraft materials. In particular, a simuJatlonof a Venus-Mercury flyby

employing constant radiation exposure rates and t' _.onstantmaximum temperature

anticipated is a poor simulation, falsely predictinrj _.,nlysmall amountsof degrada-

tion when in fact heavy damage occurs.

: 2. Solar ultravioP:t radiation dominates solar wind protons as the major

damage source in solar panel and spacecraft materi,_ls investigated in this program.

'_ Yet because of apparent synergistic effect_ from these two types of radiation, they

must be used in simultaneous combination to result in an accurate prediction of

. space radiation "_ects.
i

3. In general, thermophysica! property value changes in transmissivesolar

cell filters after radiation exposure are quantitatively lessthan changes measuredon

solar cell-filter stacks.

_ 4. The 4026 filter is presumably the only viable choice for us_ on a solar

'_ panel remaining substantially perpendicular to the sun'sdirection throughout a
f ,!

Venus-Mercury flyby if temperatures below tl40°C are to be maintained. Though

i its solar absorptance increases due to exposure to protonsand ultraviolet radiation,

the 4026 filter appears to be suitable for use on a normal solar panel.

" 5. The blue filter and blue-red filter are suitable candidates for use on a

Venus-Mercury tillable solar panel. The blue-red filter appears to be slightly

more resistant than the blue filter to increase in solar absorptance due to radia._ion

exposure.
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" APPENDIX A

Tkls appendix consistsof computer-processedspectral plots of refiectance,
transmittance, and/or absorptanceof samplesexposed to protonsand/or ultraviolet
radiation during the 240N-hour test simulating the 1973 Venus-Mercury spcwecraft
mission. Derived thermophysical properties that apply are also shown on each
spectral plot.
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APPENDIX B

Introduction

This appendix presents spectral results obtained in sltu on 18 samples exposed
to protons and ultraviolet radiation during a preliminary 500-hour test early in this
program. Eachspectral plot consists of reflectance, transmittance, and/or absorp-
tance curves as a function of wavelength between 0.28 and 2.5 microns, each
curve being numerically labelled to agree with certain exposure levels. In parti-
cular,

for those six samples exposed to ultraviolet radiation:

CURVE MEASUREMENT CONDITIONS

1 Preirradlation; samples at +140°C
2 After 260 ESH (53 hours); + 140°C
3 After 700 ESH (140 hours); + 140°C
4 After 1600 ESH (316 1/2 hours) + 140°C
5 After 2500 ESH (500 hours) + 140°C

for those six samples exposed s0multaneously to 3-keV protons and
ultraviolet radiation:

CURVE MEASUREMENT CONDITIONS

0 Prelrradlation; samples at room temperature
1 Prelrradlatlon; samples at +140°C
2 After 260 ESHand 2. 3 x 10TMprotons/cm2; + 140°C
3 After 700 ESHand 6. 0 x 1014protons/cm2; + 140°C
4 After 1600 ESH and 1.4 x 1015protons/cm2; + 140°C
5 After 2500 ESH and 2.2 x 1015 protons/cm2; + 140°C

for those six samples exposed to 3-keV protons:

CURVE MEASUREMENT CONDITIONS

1 Preirradiatlon; samples at +140°C
2 After 2. 3 x 10TMprotons/cm2; +140°C
3 After 6. 0 x 10TMprotons//cm2; +140°C

" 4 After 1.4 x 1015 protons//cm2; +140°C
5 After 2. 2 x 1015 protons//cmZ; +140°C

The spectral transmittance plot for the blue filter with sample number 2038
(Figure 83) represents anomalous data. In this figure, it is seen that spectral trans-
mittance increases with exposure. Following the 500-hour test, a microsceJplc

100
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examination revealed small particle defects on one side of sample 2038. The
curves in Figure 86 are also affected by the defects in this sample.

Solar absorptance and solar transmittance values for the 18 samples, before
and after exposure, are given in Table 7. The 6 samples exposed simultaneously to
protons and ultraviolet radiation were measured both at room temperature and at
+140°C before irradiation. Pre-exposure thermophysical property values before
exposure were identical at the two temperatures, except as indicated by footnotes.

Table 7. Solar Absorptance and Solar Transmittance Values of
Samples Exposed in Preliminary 500-Hour Test and
Measured at Temperature of +140°C

I

Kind Sample ! _ Value Value After Exposure for Duration of

of Type and pE Before
Exposure Number a Exposure 53 hrs 140 hrs 316 hrs 500 hrs

Blue Filter as 0.78 0.79 0.79 0.79 0.79
on Cell, 2041

Blue Filter as 0.02 a 0.03 0.02 0.03 0.03

o alone, 2044 85b_" Ts 0. 0.84 0.85 0.84 0.84
at.9

o _ 4026 Filter
._ "8 " a 0.30 0.31 0.31 0.30 0.31
o " on Cell, 2042 s

X 0 QS
"' "_ 4026 Filter 0.05 0.05 0.05 0.06 0.06 '

_' _ _ alone, 2045
," _. _ Ts 0.29 c 0.30 0.30 0.29 0.29

' "_ a Blue-red Filter
, .E O.69 O.68 O.68 O.68 O.68

u_ on Cell, 2046 as
_ r

,_ Blue-red Filter/ as 0.20 d 0.21 0.21 0.22 0.22

Adhesive, 2043

_ a0 01 at room temperature _
'_ 86 at room temperature _'

ff Co 30 at room temperature i
': %: 21 at room temperature .!

#.
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Table 7. Solar Absorptance and Solar Transmittance Values of
Samples Exposed in Preliminary 500-Hour Test and
Measured at Temperature of +140°C (continued)

Kind Sample _ Value Value After Exposure for Duration of
of Type and _ Before

Exposure Number .a Exposure 53 hrs 140 hrs 316 hrs 500 hrsO
- _ Ill

Blue Filter
as 0.78 0.79 0.79 0.79 0.79

on Cell, 2035
c-
O

-a Blue Filter s 0.08 0.07 0.05 0.04 0.03
a
_,- alore, 2038 "Is 0.78 0.80 0.82 0.83 0.84

.o 4026 Filter
> as 0.30 0.30 0.30 0.30 0.30

on Cell, 2036
5 4026 Flit ,_r as 0.05 0.05 0.05 0.06 0.06

o alone: 2039 Ts 0.29 0.29 0.30 0.29 0.29na
Blue-red Filter

o 0.69 0.69 0.68 0.69 0.68
on Cell, 2040 as

"' Blue-red Filter/

Adhesiver 2037 as 0.20 0.21 0. 21 0.22 0.22
Blue F;Iter

as 0.78 0.78 0.78 0.78 0.78
on Cell, 2047 t-
Blue Filter as 0.03 0.03 0.02 0.03 0.03

E a lone, 2050 Ts O. 84 O. 84 O.85 O. 84 O. 83

as 0.29 0.29 0.30 0.29 0.30
_,026 Filter

o. on Cell, 2048
o a
-a 4026 Filter s O. 05 O.05 O.05 O.06 O. 05

alone, 2051 "Is O. 29 O. 30 O.30 O. 29 O. 29

Blue'red Filter as O. 69 O.69 O.69 O. 69 O. 68
on Cell, 2052

Blue-red Filter/ as O. 21 O.20 O.20 O. 21 O. 21
Adhesive, 2049

• 102 i
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